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o
i da ran ia cee forml N
Consider independent dom variables Xq4/X/ +Xn, unifo Y .&&ggr o
ED ]

distributed on unequal intervals (0,a;), a; real, i = 1,2,.+s,n. Let 1

s

S =Xy + X+ eeo + X o The density of S is shown to be a linear

combination of n!t B-splines with constant coefficients. A probabilistic

¢ AN,

interpretation of the B-spline as the density of a linear combination of order

fad

statistics from the uniform distribution on (0,1) is given. This

»..x.

o

interpretation makes it possible to establish recurrence relations for 3

' densities and moments of linear combinations of order statistics and to give t:
‘,

asymptotic results both for B-splines and linear combinations as well. e

Examples and applications are also discussed. “

4
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SIGNIFICANCE AND EXPLANATION
B-splines and linear combinations of order statistics play an important
role in the approximation of functions and statistics respectively. It is
useful to investigate the relation between the two subjects, both from the
theoretical and computational point of view.
B-splines on equidistant knots were viewed nondeterministically by I. J.
Schoenberg already in his first work on B-splines. Several studies on

distributions of sums of independent uniformly distributed random variables

AW Y, B M M M S e S dm——— e = wt e m -

have given formulae which in fact are easily seen to represent splines.
However, a precise probabilistic interpretation of the B-spline seems not to K
be explicitly stated in the literature.
. ,»'; “\!’f dvev: -F ;
// It is shown here that the density of the sum of n independent random l

variables uniformly distributed on unequal intervals is given by a linear

combination of nl! B-splines with constant coefficients.

Another useful representation of the same density is given using
de Boor's definition of the discrete B-spline.

It is also shown that the B-spline is the density of a linear combination
of order statistics from the uniform distribution on (0,1). This interpre-
tation of the B-spline allows one to establish easily validity of recurrence
relations for densities and moments of linear combinations of order statistics
as well as to state limit theorems both for B-splines and linear combinations.

Exaﬁples given below illustrate how asymptotic results for B-splines may
be applied to linear combinations of order statistics. Using limit theorems
of probability theory two examples of Curry and Schoenberg (1966) for B-

splines are derived even in somewhat greater generality'(see example 3)1

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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B~SPLINES AND LINEAR COMBINATIONS OF UNIFORM ORDER STATISTICS

Z. G. Ignatov and V. K. Kaishev*

1. Imtroduction and summary.

Let X4,X3,...,X;, be independent random variables and X; be uniformly distributed

on the interval (0,a;), a; > 0, i = 1,2,¢eo,n. Llet S = Xy + X5 + oo + X,. AN
expresgsion for the density of S was found by Olds (1952), applying the convolution

formula for the density of a sum of two random variables and an induction argument.

e ke

Dempster and Kleyle (1968) have given a geometric derivation of the distribution of S

n
under the condition X xi/ai < 1 and have pointed out the relation of the latter to the
i=1

distribution of linear combinations of uniform order statistics on (0,1). The distribution

of such linear combinations of order statistics in more generality, covering the case of

A K K o v o

zero terms in the linear combination has been obtained by Ali (1969) and Weisberg (1971).

Cicchitelli (1976) approached the same distributional problem by direct integration. A

. e

related distribution was recently considered by Currie (1981).

In the present note the relation of the above mentioned distribution to polynomial
splines is emphasized. Theorem 2.1, Section 2 gives an exact representation of the density
of S as a linear combination of n! B-splines. The B-spline Mn(x)xo,x1,...,xn)
introduced by Curry and Schoenberg (1966), of order n,

(degree n - 1) with knots Xg € X4 € ¢os < x, 1is defined by the familiar divided

difference representation

n-1
n (x, - x) +

PRV R P Y

(1.1) Mn(xlxo:x1l°~'lxn) =n 2 W' (x.) ’
=0 3
where w(x) = (x = xy)(x = x4} ..o (x = x ), (x), = max {x,0} . H

*This work was initiated at the Institute of Mathematics, Bulgarian Academy of Sciences and
completed while the second author was a participant in the scientific exchange program
between the National Academy of Sciences of United States and Bulgarian Academy of
Sciences.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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Let 2Z4,Z,,¢++,2, be independent uniformly distributed random variables on (0,1).

(1) > Z(z) P eee ? Z(n)

Section 3, Lemma 3.1 that the B-spline coincides with the density of the linear

Let 2 be the order statistics of Z,,Zp,...,2,. It is shown in
combination L = Z0q) * 8Z(5) ¥ .ee ¥ a,2(5)+ Recurxence relations for densities of
linear combinations of order statistics and their moments are also given. In particular,
Lemma 3.2 of Section 3 gives a probabilistic analogue of the well known recurrent relation
for the univariate B-splines (c.f. de Boor (1972), Cox (1972)) in terms of densities of
linear combinations of order statistics. On the basis of Lemma 3.1 and the limit theorems
6 and 7 Section 5, of Curry and Schoenberg (1966) for the B-spline, two limit theorems for
the linear combination of the order statistics z(,),z(z,,...,z(n, are stated (Section 4,
Theorems 4.1, 4.2). Theorem 4.3 of Section 4 gives a necessary and suficient condition for
convergence of the B-spline to 1//5;.exP(-x2/2) when n tends to infinity. Under this
condition, Theorem 4.4 states an expansion for ffm Mn(ttxo,...,xn)dt- Both theorems 4.3
and 4.4 are easily obtained by correspondingly applying Lemma 3.1 to the results of Hecker
(1976) and van Zwet (1979) for linear combinations of uniform order statistics.

In Section 5, examples and applications of the results of Section 3 and 4 are given.

They illustrate both the stochastic approach to studying asymptotic behavior of fundamental

spline~-functions, and the use of spline theory techniques in probabilistic problems.

-
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2. B-splines and the distribution of 8.

We first state the following Lemma which interprets the B-spline stochastically.

LEMMA 2.1.

The conditional density function fs(x/x.l/a1 > xz/a2 ? cee ? xn/an) coincides Wx
with the B-spline Mn(x;xo,x1,...,xn) having knots x5 = 0, x4 = aq, X3 = aq + a3,..4,
X, = a3 +ay+ ...+ a.

PROOF .

As assumed above the random vector (X,,Xz,...,xn) is uniformly distributed in the n-
dimensional hypercube (0,a1) x (O,az) X ... % (0,a,) = . The random event
{x1/a1 > X, /a, > ... 2 xn/an} = 0 ¢ Q is an n-simplex denoted by ¢ with vertices
(0,0,...,0), (a,,0,0, veey 0, (a1,az,0,0,...,0), see, (a1,a2,...,an). Then the

probability of o is
n
L TTa
P{}=vol(0)‘nl =1 Y1
vol(Q) n n!

i=1

Now, by definition fs(x/x1/a1 ? x2/a2 2 vee P xn/an)

P{(x1 +X, t e v K E (x,x + h)) n (X;/a, > X,/a, 2 «.0 2 xn/an)}
= lim

10 h p[X,/a, > X,/a, > ... > X /a}
= _n! 1im vol (a(x,x +h) n o)

P

i=t 1

where a{x, x + h) = {(u1,u2,...,un) T ouytu, s tu € [x,x + h]}.
1f the hyperplane uy + u; + ... + u, = x is denoted by a(x) then

vol{(a{x, x + h) n o) 1
lim h o voln_1(a(x) n o).,

h»0 Yn

' where vol is the (n - 1) - dimensional volume.

n-1
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vol _,(a{x) N o)

ni
Thus £ (x/X,/a, > X /a, > ... > X /a ) = — = .
T-T a n
i
i=1
n
Let us assume that vol(fl) = l ] a, = nt. Then
i=1
-
(2.1) fs(x/x'/a1 > xz/an2 b IR | xn/.n) p= voln_1(a(x) n o)

and vol{(o) = 1. Now we can apply Theorem 2 of Curry and Schoenberg (1966) which states:
The fundamental spline function Nn(xlxo,x,,...,xn) is the linear density function
obtained by projecting orthoyonally onto the x-axis the volume of an n-dimensional simplex

g of volume unity, so located that its n + 1 vertices project orthogonally into the

n'

points XgeXqpoeesX of the x-axis, respectively.

n

Let us project orthogonally the simplex J onto the g-axis with a parametric equation
u, = t/'n . u, = e/l . e, u, - t//n , t < R. If the coordinate system O,y is
introduced onto the g-axis so that the point (t//; ' t//;, ceey t//;)e g has the
coordinate t then the orthogonal projection of the vertex Al(a1,n2...,ai,0,0,...,0) of
the simplex o onto the g-axis will be the point ;; with the coordinate

(ag + az + .0 + ‘1)//; , 1 =12,...,n, with respect to 0,q9. Then according to the

above theorem of Curry and Schoenberg

vol _,(a(x) na) = M (x;0, a,//n, (ay + a,)//n,c.c,ay + az.ee +a)//n) o

Now from (1.1), setting a, £ 0 we have voln_1(a(x) n o)
n (ta, + a, + + a)//n - x//'rtl-)n-1
. l 0 1 ces 3 +
j=0 TDT ((ag + a, + ... + aj)/v/;- (ag + ay + +o0 + a;)/V0)
i=0
i#j

= f; Mh(xso,a1,a1 + ay, «oe, 2y + a, + eee + an) .

n
From (2.1) for the case | I a, = n! we have
i=1

fs(x/X1/a1 P cee P xn/an) - Mn(xyo,a.l,a1 + 85, eeey A9t Ayt ol # an).

-4-
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Let vol(f) = | I a; =k #nl, x > 0. By the simple transformation
i=1
ii = xid, d=vVni/k, i= 1,2,...,n we obtain the set of random variables ;1’ §2""'2n

uniformly distributed on (0,by), by = a;d, i = 1,2,...,n and such that

n
vol(Q) = | | bi = nl,

i=1
Then
(2.2) £~(x/x/b1 > x/b2 P ce0 ? x/bn) =

s
M (X70,by,by + by,eussby + by + ouu + b)) .

Changing back to the variables X4sXp,¢00,X, on the left side of (2.2) and applying (1.1)

to the right side we have

£5(x/X /) > Xp/8, > o0 > X /2 ) =
Hh(;}o,a1,a1 +ay,ece g Ay oo, 4 an),

where x = % + proving the assertion of lLemma 2.1.

Remark: For clarity and simpler notation we have confined ourselves to the case a; >0,

i=1,...,n. Since the divided difference (1.1) is a symmetric function of its arguments

Lendiuliinamn.

ie., it is independent on the order of the points XgeXqreee,X, in the argument list it

can be easily seen that the above Lemma is true for a; real.

N P

We are now ready to prove
THEOREM 2.1.
Let Xq+X3s+0.,X, Dbe independent random variables and X; be uniformly distributed K

on the interval (0,a4), aj ~real, i = 1,2,...,n. Let S = Xy + X5 + 400 + Xpe

Then

1
(2.3) f(x) = — 3 Mn(xyo,ai1,a1 ta, seeea ta tta),

(1y0dyeeniideg 1 2 1 i n

where Q, are the permutations of (1,2,...,n).

-5-
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PROOF.

fo(x) = ) P{x, sra, >X /a, > ...>%x /a } e
8 (Lqedyreserd 1EQ 1,74, T, a4,

fs(x/x1 /ai > X /ai ? cee ? Xy /ai )
1 1 2 2 n n

1
= ) L (x/xX, /a, > X, /a, > ... > X, /a, )
T g\ ¥/ %y /24 1./%4 1 7%
(11,12,...,in)Can 1 1 2 2 n n
! )
= - M (x;0,a, ,a, *+a, ,...,a, +a + ...+a )
!
M oageseancg P Lt 4 Lo oh a

by Lemma 2.1.

Another interesting representation of fs(x) arises if the notion of discrete B-
splines as viewed by C. de Boor (1976) is assumed.

Let 0 < xy € oeo < X, 84 = Xqpoe0,8, = X, = X, q and 1}11,...,in) =
- {o,ai1,gi1 + ‘12""’311 + eee *+ ain} where (iq,...,ig) € Q.. We shall also use the

notation T(i,,...,i) = {r in which for the sake of

o,(11,...,1n)""'Tn,(11,...,1n)}
brevity we will further drop the second subscript and write {10,...,1n}.

n
Let t = {t1't2""'tp}' P = 2 (:] be the strictly increasing sequence obtained by
i=0

ordering the set

{o'ai1"i1 + aiz"""11 + a, + ...+ 8, seeesly + ay + .0 + a, } ’

where (11,...,ij) < C;. C; are the combinations of j from n, j = 1,...n.

The B-splines of order n for the knot sequence t are given by

niln’:__(x) - n[ti,...,t

-

i+n](. - x)?“, i =1,...,q9, where [ti""'ti+nj denotes a

n-th order divided difference and q = p-n.

tataa®lilal

Since {x;0, a a + a vee,8 +a, + ...+a ) of (2.3) is also a spline «
Malx10, a4 o8y + 85 occcndy b2y, i N

with knots t it can be represented as a linear combination of the B-splines Mi,n,t(x)' ?
6= :

\

\

Y

L

L]

[}

-~

o

g

by




i =1,...q by the Curry-Schoenberqg (1966) theorem (see p. 113). The non-negative
coefficients of such a linear combination termed by C. de Boor (1976) discrete B-splines

are defined as

{2.4) Bj,n,l(i1,...,in),£(i) BT LA TR LV AL TP ML L L PRI

Remark 1: When j = 0 we simply write Bnllﬁi1:---,in),£'

Remark 2: When n 1, (2.4) reads

Oy _ . - 0
Bj,1,1(i,,...,in),£“) = gttty 0 - ey
1 T >t
0 r
where (‘l'r - ti)+ = { o i .
60 , 1 <t

Thus the density fs(x) is expressed in terms of discrete B-gplines as

q
1 1
(2.5) £ (x) = — ) 8 . . (1)M, (x) .
S n! i=1 (i yeeed )CQ nll(l1foc-[1n)'£ llnlE
1 n n
Note that if tj < x € tj+1 /J =n,e..,q=1 then
fo(x) = o= i 2 8 {i)M x) .
s n! n,I}iz,...,in),E i,n,£

i=j-n+1 (i ,...,1i )cQ
1 n n
since other Mi,n ¢(x)'s vanish identically. This means that the evaluation of f5(x)
—
for any x € [xp,x,] requires summation of no more than n of the q terms on the
righthand side of (2.5).

The discrete B-splines in (2.5) can be determined from the recurrence expression

aj,n,l(i1,...,in),£(i' = “j,i,nl”jm T tian-1B541, 01 )
(2.6) + (b T Tj)ej,n-1(i)] , where
O gon = Bpen ~ B0 - T - e]

Remark: For a proof of (2.6) with differently normalized discrete B-splines see

Jia (1983).

-7~
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3. bPB-splines and order statistics.

We first state the following Lemma, providing a probabilistic interpretation of the B-
spline in terms of order statistics. It should be noted that this result easily follows
differentiating the distribution formula given by Dempster and Kleyle (1968) and Ali

{1969). For the sake of consistency with the rest of this note another proof is given

below.

LEMMA 3.1.

Let Z4,23,¢4442, be n independent uniformly distributed on (0,1) random
variables and let 2(1) b z(z) Piea? Z(n) be their order statistics. Let aq4,89,000,a)
be fixed real numbers. Then the density of the linear combination L = a1z(1) +

azz(n) touot anz(n) is fL(x) = Mn(x;o,a1,a1+a2,...,a1+a2+...+an).

PROOF .
From Lemma 2.1 we have

£ (x /2, 2, ... 2_)
aq2.tas2y+e.cta 2y 1 2 n

= Mn(x;O,a1,a1+a2,...,a1+a2+...+an) .

It can be easily seen that

(x / Z1 2 2, .02 Zn)

171 7272 nn

pi{(a,z +a,2%,*.c.4a 2 € (X,x+h)) N (Zy > Z, >...> zn)}

= lim L
b0 h pi{z, > z, >...> zn}
(3.1) .um.:_' ...f1du1...dunslim%f oo [ntauiiau
h+0 A h*0 8,08, n

where

4 = {(u1,u2,...,un) H 1>u1>u2>...>un>0 N x<a1u1+a2u2+...+anun<x+h} )

4, = {(u‘,uz,...,un) . 1>u1>...>un>0} ,

4, = ((u,,uz,...,un) : x<aju taju,te.ata u < x+h} .

- "8 -




Denote

1 ’ (u1,u2,...,un) € A1
8y = _
1 0 ] (“1102,..-,\]“) e A1 .
Then (3.1) yields
1
(3.2) =lim— [ ... [ ¢, n!l du...du .
hso P 8, Ay 1 n

Since the density of the random vector (z(,,,z(z),...,z(n)) is Ch n! (c.f.
1

S. Karlin and H. Taylor, (1981), p. 102)

+ veet +
. 1—] [ ' o P{a1z(” a,2 )% a2, © (x,x+h}}
. h Y A n \11-o- un h .
A 1
2
From (3.3) replacing in (3.2) we finally obtain
1
lim — f cos f 4 n! du,du,...du
h+0 h A A1 1772 n
2
(3.4)
' P[‘1z(1)+“2z(2)*"'*""nz(n) e (x,x+h)}
= lim " = fL(x) .
h+0

Since the vector (z(,,,z(z,,...,z(n,) has a density, the random variable

.29\ a2 o tee et 2, also has a density, denoted by f£;(x) in (3.4). That completes

the proof of Lemma 3.1.
Remark 1: It can be easily seen by a linear transformation that if X3 < xq <..e< x,, a4y =

Xy=Xgs 83 ® Xp=Xq,eees Ap = X <X, 4 and 21'22""'En are independent random variables

uniformly distributed in the interval (xo/(xn-xo) R xo/(xn-xo) + 1) then the linear

T =a2 _ +a.2 _ +...ta 2 = e .
combination L a1z(1) azz(z) anz(n) has the density fE(X) M (XiXg,%q, xy)

Since zi =z + xo/(xn-xo) , 1= 1,2,...,n and Z(i) = Z(i) + xo/(xn-xo), i=1,2,...,n,

f (x) = ¢ (x) = (X1Xn,Xq,00+,X_) holds.
~ L+xo (LA | n

L
Remark 2. 1f some a;, i = 1,...,n are zero i.e. the B-spline has multiple knots than the

above lLemma gtill holds. The righthand side of formula (1.1) must be replaced by the

expression for divided differences for multiple arguments (c.f. Shumaker (1981) p. 119).

For stable computation of tL(x) however the recurrence relations given next should be

’
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Application.

The circular serial correlation coefficient with lag A is given by

N - - N =2
(5.1) R %1 (xj-x)(xjﬂ-x)/ji1 xgx)"

where x“,j = xj and A < sample gize N. 3

It may be noted that the marginal density of aRyrs in the case x,, 1,...,N i.i.d. :
N(0,1) and N-o0odd is given by the B-spline Hn(x2Ac1,AC2,...,ACn+1), where !
AC1 > aC2 >..:> )C ;4 are the distinct latent roots of the matrix of the quadratic form in
the numerator of (5.1), n+1 = (N~1)/2. This follows differentiating and slightly

rewriting formula (1.1) of Dempster and Kleyle (1968) which gives the marginal distribution

of AN . f

PP
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Let T,, = /3/n (2, 5 +eeet Z
’

Then accordi

2n,2n) = /3n. Then, for the density of Ty, we have
X, tees+ X
a 1 2n
ax P(V2n 5 < x) = fT (x)

2n
= M, (x;=n ¥3/n, (-n+1) /3/n, (-n+2) ¥3/m ,..., n /3/n)

ng to the LCLT

lim sup Hzn(x:-n 3/n, (-n+1)Y3/n, (-n+2)¥3/n ,..., n'3/n) - 1—-exp(-x2) =0 .

ne® ~mx e /;
EXAMPLE 5.
2k 2 2 2
Tox-1 T 72703 %201 ¢ 2% 305 %, 001 2K 50T 23,5009
beuot 2k 2 z + 2k =2z +
(2k=3) (Zk=1) 2k=1,2k=1 (2%=17 %k, 2k~1

Then, by Lemma 3.1

2 2 2
* 2K T3 (I Zke1,2k-1 ¢ 2K [3RTE) (3T) Zrrz,2k=1 Tt 2R TS 2 g ok o
x % S & 2,

Tkt T M T = e TR meT  Bes

and by Example 5 of Curry and Schoenberg (1966)

1

lim sup 4 (X) ~ ————e o .
Ko —wgx<m 2k-1 T cosh x
EXAMPLE 6.
2k 2k 2k
- £X 4 + (2o £
Let Tok-1 = -2 1logk+ ((F+21log k)2 . .+ (5-% 201,261 *

2k 2k 2k 2k
M I:T)zk+2.2k-1 oot (T E_JZZk-1,2k-1 -2 log k + 2(1 + log K)Zy oy *
1 1 1
* A RTRTY Zret,2k-1 2K TSR Zke2,2k-1 P00t 2K 3T Zypq,0k-q+  Then by Lemma 3.1
the density
X
£ (x) = M (x7-2 log k,+es, =2 log k, Zk . 2k_ PRSI 25) and
T 2k=1 k k~1 1
2k-1
lim sup fT (x) - exp{-exp(-x) - x) =0 ,
ko —o0¢x <@ 2k~1
by Example 6 of Curry and Schoenberg (1966).
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exp{-x) , x> 0
f,r (x) converges uniformly to A(x) =
n

[/} , x <0
for x outside an arbitrarily small neighborhood of the point x = 0.
EXAMPLE 3.

Let Tp.q = ~/k + 27k Z, 2x-1+ Then, by Lemma 3.1
’

k
___/\.\ — _,—/k\
f,rzk_1(x) = sz_1(x;-v’k,...,-/k s "Kpooe,/K)

converges uniformly for all real x to exp(-xz)//;.
More generally, by a theorem of Mosteller (c.f. David (1981) p. 255) it is known that

if 0 < p <1 and
n n
S
n 1-p "p(1-p) n=[np] ,n
then T, converges weakly to the random variable T normally distributed with ET = 0

and DT = 1. Hence, by Lemma 3.1

n-[np) [np] +1
N— P, N,
AL RUIEY.: PPy -AE, S0p) L, BUTR) Gay ooy L (X eyp(~u?/2)au
2

P /mp(i-p) /mpCi-py " /mw

for every x € Ry.
EXAMPLE 4.
According to the local central limit theorem (LCLT) if Xp, n = 1,2,... are

independent with a common distribution F having mean 0 and variance 02 and if F has

a bounded density, then

lim sup 4 P(/n Yn < x) - - exp(-x2/202) =0 .
n#e =@l 2%
Let X, = /6 (z, - 1/2). Then
1 ' x » 1/2/6
Fix) ={ x/6 + 1/2 , -1/2/6 < x < 1/2/6
0 , x € -1/2/6

and the conditions of the LCLT hold with 02 = 1/2. Thus we have

X tesotX

/2n 1 Ty 2"-43/::

‘21,2:\ Yoot zzn,zn’ -vY3n .

[y SRy i A - aayt S i Bt SR S B~} ot D Vi ey a0 My BB Y e

LI e B gy : o, AL ALNUIUNE R S TR, 5 0 D

T L

.
a—a.n’y
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S. Examples and applications.

The following examples illustrate how, on the basis of Lemma 3.1, providing a
probabilistic interpretation of the B-spline, asymptotic results for B-splines (Curry and
Schoenberg (1966), Section 9) may be applied to linear combinations of order statistics.
It is also shown (examples 3, 4) that using limit theorems of probability theory the
results of Curry and Schoenberg (1966) (examples 3, 4) can be derived, even in slightly
more generality (example 3).

As above, here Z9,n » zz,n Peaed Z,,n 1is the order statistics from the uniform
distribution on (0,1).

EXAMPLE 1.

Let x4 < Xy € ... be a convergent seguence of reals with lim x, = B. Then the
nere
sequence of random variables T, = xg + (x.l—xo)z1'n + (x.‘_,-x.|)z2'n +eoot (xl.l--xﬂq)zn'n

converges weakly to the constant B.

PROOF .

According to Lemma 3.1 and Lemma 6 of Curry and Schoenberg (1966) for the density

fp (x) of the random variable T, we have
n

1

J2, £ 001 + x8/(ne 1) lax = [T (k) (1 + x8/(n+1)) P Nax
n

1

n
TT ¢4+ %/t
i=0
It can be easily seen that E
lim — L - e B8 | ]
P T T+ x a/tnen) :

i=0

Hence, by Lemma 4 of Curry and Schoenberg (1966) T, converges weakly to B and
therefore T, converges to B in probability.

EXAMPLE 2.

Let T, = nZ, .. Then, by Lemma 3.1 the density of the random variable T, an(x) = !

s emasas v % . "al s

M,(x;0,0,...,0,n) and hence, by Theorem 7 of Curry and Schoenberg

-18-
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We finally remark that the Berry-Essenn bound of Corollary 1 can be sharpened by means

The remainder term in the last expansion is given by van Zwet (1979) to be typically

of Corollary 2 to obtain

of order

R I L T s —

W2} )

Jen

n
+ ) {y
j=0

Y T (n¥2) }3'
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Following van Zwet (1979) we develop the expansion of Theorem 4.4 for the special
cases m =3 and m=5. For m= 3 it reduces to a bound of Berry-Essenn type,

- 1/2
typically of order n .

COROLLARY 1.

There exists a constant C such that for every n = 1,2,... and every

n
aj(n),...,a,(n) with .X1 a;(n) ¥ 0,
J‘

n
x _ : Y T rTE
sup i J M (E1Yg oYy ey, Dat O(x)' <c jzo |y, o/ @mF 0 mey|?

Let now m = 5. Define §

A o

n
F 00 = 600 - gl ) [y? SENEN 0 +
o 3

n
+ g .)?olyj,n/7‘-"*"-"“*2”4 -5} Hy00 4
J‘

;i

n

2
+ :—8-( Ly, Amrimean?) BOa)] .
j=0 J.n

COROLLARY 2.

e

There exists a constant C such that for every n = 1,2,... and every a,(n),...,an(n)

2n) # 0,

n
with § a
=1 3

X
s:p l o M(E1Y g no¥y peeeeey, Dt

n
- 5 .
F,(x) | <c jZolyj’n/v'(nn)(mz)l

Corollaries 1 and 2 follow by Lemma 3.1 and Corolaries 1 and 2 of van Zwet (1979).

.
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Vj'n(x) = xj,n -x, -ox ,
V.

n 2 -
Wy a0 = vj'n(x){j.);0 Vj'n(x)}

1 -1
- { M'z_z} 20y, o - Um ) 2,
n+2+x !

n 1
E(x) ==-) W, (x)= x{!iﬂ:l% /2
j=g I n+24x

TN G LS, T TR, V0 6 B TR S aj

-
el

-
»
-2

It is easy to check that I wj,n(x) = 1, For integer m > 3 and real x and 2z, let

m=-1 n v
1 1 W k
@ TT5T i 1wl

Gy p(Zsx) = 8(x) - ¢(z))_" H
‘ k=3 'k =0

(vak-i)

"
where ) denotes summation over all nonnegative integers “3!"'lvn_1 with
m~1
1< ) (k=2)v, S m=3 .
k=3
THEOREM 4.4.

For every integer m » 3 there exists a constant C, such that for every n = 1,2,...

and every aj(n),...,a (n) with L ag(n) * 0,

x
sup | [lamyayy oyy feeeeoyy at

n
= Gy, nlE(x),x) ‘ <cy jéo ij'n/v'(n+1)(n+2)'|m .

PROOF .

Follows by Lemma 3.1 and the theorem of van Zwet (1979) establishing the Edgeworth
expangion for the distribution function of T,.

Since we require the condition (4.4) to be fulfilled the remainder in the above
expansion tends to zero for every m ? 3 and for increasing m. The rates will depend of
courge on the triangular array {aj(n)} related to the knots of the B-spline. The

- 72 (m-2)

remainder approximately behave as n (see van 2wet (1979)).
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Yy,n = (X4,n = %)/00 3= 0,eeen .

Since I aj(n) # 0 implies that o2 # 0 the y, ‘s are well defined with

Iyjp=0 and I yg'n = (n+1)(n+2). .

THEOREM 4.3.

1 2
lim sup Hn(xzyoln,y1'n,...,yn’n) - — exp(-x"/2)] = 0

ne —e(x(e V2x
if and only if
(4.4) lim | max | Yy,n /(1) (n+2)|] = 0 .

n+» 0<j<n

PROOF .

Applying Lemma 3.1 to the theorem of Hecker (1976) which gives a necessary and
sufficient condition for the asymptotic normality of the linear combination T, = Yo,n *
, (y1'n-yo'n)z1'n + (Y2'n-Y1'n)zz’n +ooot (Yn,n'Yn-1,n)zn,n we easily obtain the assertion

of Theorem 4.3.

Under the condition (4.4) we shall derive an expansion for the spline distribution

function : '

x
| M (1Yo, 0¥ 1,nr " ¥, o)
using a theorem of van Zwet (1979).
. Define
x
o(x) = [Z ¢(t)at ,

*(x) = = exp(~x2/2),

2% r
' H. - the Hermite polynomial of degree r i.e. S_iéil = (-1)r¢(x)ﬂr(x)- For j = 0,¢c.,n
dx

and real x let

-14~
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THEOREM 4.2.
Let the seguence of random variables T, = a,(n)z(,) + a3(n)Z ) +.oot

‘n(“)z(n)+‘n+1(“) converge in distribution to a random variable with a distribution

?
A A . A———— o e

function F(x), and let
]:' e % ar(x) # e65 .
Hence dF(x) = A(x)dx, where A(x) is & Polya frequency function and

(4.3) lim fT {x) = A(x)
ns® n

uniformly for all x provided that A(x) is not of the form (4.2). Here fT (x) denotes

n
the density function of the random variable The

For A(x) = Ao(x), again (4.3) holds uniformly for x outside an arbitrarily small
neighborhood of the point x = 6-61. ]
If @(s) = exp(8as) as in case i) then

lim £ () =0
n
nre

uniformly in x outside an arbitrarily small neighborhood of the point x = §.

The proofs of Theorems 4.1 and 4.2 directly follow from theorems 6 and 7 of Curry and
Schoenberg (1966) respectively, applying Lexma 3.1.

We shall now use two theorems of asymptotic statistics to establish easily results for
B-splines.

Let a,(n),...,un(n) be a real sequence with Xo,n = 0, X9,n " ay(n), X3,n = ay(n) +

n
‘2(“)"“'*n,n = a,(n) +...+ ag(n) and 2 ag(n) ¥ 0 for every n.
b il
Define
- 1
s W~ ) j§0 *Non '
n
2
, on(xj'n x )

% (n+1)(n+2) '

-13-
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4. Limit theoreas.

‘e

Let us first state two limit theorems concerning linear combinations of order
statistics. For the purpose the class of Polya distribution functions F(x) will be
required. These are the distribution functions having a bilateral Laplace transform of the
form

(4.1) J° e7%* ar(x) = 1/6(s) ,

-—r

™
where ¢(s) = exp(-Ys2 + 6s) I—I (1+Gis)exp(-ﬁis) ¢ Y20, G,Gi real , I éi < ® (gee Curry
and Schoenberg (1966), p. 91).

THEOREM 4.1.

1f {a1(n),a2(n),...,an(n),an+1(n)) is a sequence of constants such that the sequence
of linear combinations of order statistics a1(n)z(1)+a2(n)z(2)+...+an(n)z(n)+an+1(n)
converges weakly to a random variable W with a distribution function F(x), then F(x)
is a Polya distribution function. Conversely if W is a random variable with a Polya
distribution function F(x) then there exists an appropriate sequence of constants
a1(n),a2(n),...,an(n),an+1(n) such that a,(n)z(1)+a2(n)z(2)+...+an(n)z(n)+an+1(n)

converges weakly to W.

2
It is known that exp(Ys") is the bilateral Laplace transform of the random

variable W normally distributed with EW = 0 and D(W) = 2y. Consequently 0(8)-1

MRt vt e

(c.f. (4.1)) is the bilateral Laplace transform of the distribution of the sum of

independent random variables U = § + /E?h + 61v1 - 61 + 62V2 - 62+..., where V; is

exponentially distributed with EV; = 1, i = 1,2,... , W~ N(0,1), and § real constant.
i) If 0=y = 61 = 62 =... then the bilateral Laplace transform of the random
variable U is &(s) = exp(6s) and no density function exists.

ii) I1If Y = 0 and only one of the constants Gi is nonzero, i = 1,2,... then the

random variable U has a density function

1
o T exp(=(x-8+6,)/6,) , (x-6+6,)/8 >0

L At i)
.

Ao(x) =
0 , elsewhere , .

which is discontinuous at the point x = 6-61.
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A generalization of (3.5) is straightforward. Let t = {to,...,tp} be a non-

decreasing real sequence with t; < tj.,. i=0,eee,p™n, {po,...,pn} be an increasing

integer sequence, and I = {rj =t }, 3 =0,c00,n, P = 0/ P

Dj n
let also a; = 11-10, a, =T, = Toeevesdy = T, < L and
b1 =t1 - to'o--,bp = tp - tp_1 i.e. 81 = b1+o.o+bp1, lz b bp1+1+¢'0+bpzpo-o,
a, = bp +1+...+bp . Then by the same argument as in deriving (2.5)
n-1 n
£ x-T =
ag3q, oot anzn'n( o’
i
= [ (i-1)f 4+ (x-1,)
i1 n,T,t b1+... b1-1+b121,n+"'+b1+n~1 n,n 0

where q = p = n+l, sn,r,t(i'1) is the discrete B-spline given by (2.4).

Denote by u,(a.2 +eeot A2 ) the 2-th moment of the linear combination L =
21T 1,n n n,n

a4Zq,p teoot ‘nzn,n' £=20,1... and asswne the sequence x is strictly increasing. Then

the following recurrence formulae hold.

+ooot anzn )

¥e(24Z4,n n

{(3.6)

] .
+2y=1 {  _2=jn+i-1
- (™Y Y x I g )uj(g1z1' oot a )

n =0 n n-1zn-1,n

where the initial values are equal to

byagZ, ) = a3t - /L R (3= 0

-1
(3.7) j§1(j) L (xp xm)"n-j(‘1z1,n +oeot ajzj,n) xp xQ

’ (p’0,1,...,p<n) .

=1

n =1
O 1T - - !
) (j) I (o mkpMp_g(8Zy | +eeet azy n) = nxg
3.8
( ) "

, (p=0,1,c00,n=1) .

The proof of formulae (3.6), (3.7) and (3.8) follows applying Lemma 3.1 to the

corresponding formulae for the moments of B-splines (see Newman 1980).

-11=-

= p be a subsequence of t.
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To emphasize the sample size n in the sequel, we shall also use the notation

T -

zi.n > z2,l\ Peee? zn,n for the order statistics of the sample ZyeZgeseesZy. Lot x =

'-I .
‘»;. {xo,x1,...,xn} be a non-decreasing real sequence with xy < x, and a; = xq=x5, a5 =
:: X3=Kqseeerdy = Xp~Xp_qe
LEMMA 3.2.
. Let n > 2,
ke,
k.
f. n [x-xo
. £ (x=x ) = — |—— F (x=x_ ) +
: +oo ot - -; +eo ot
’ a1z1,n anzn,n ° n=1 xn xo a121,n-1 an-1zn-1,n-1 0
X, %
- f (x=-x_) .
- + +oos
xn "o a‘\ a2z1,n-‘\ +anzn-1,n-1 0 ]
PROOF .

The proof follows immediately applying Lemma 3.1 to the recurrence relation for stable
evaluation of B-splines (de Boor (1972), Cox (1972)).

let t = {to,t1,...,tn+1} be a sequence obtained from x by addition of the point '

t, satisfying xv_1<tv<xv.0<v<n.n>0. Let a4 = t4 = t;, ay; = ty -

tgreeesa, = &) = £ Lseees@ 0=t =t ’
LEMMA 3.3.
£ (x=t,) =
+eoot + + Fooot
a1z1,n (a\) a\J+1)z\3,n a\)-!-22\1-!-1,11 an-Hzn,n °
t ~t
'tv-tofaz 4.t az _ +a .z beeut az XEQY
(3.5) nt1 0 “1°t,n "°° Vou,n v#1v#1i,n """ “n“n,n
. tar1”ty (x-t.)
T -t + +eos + teoot '
et 0 29 Y 2% 0 *aZue1,n T 2vri%un aeiZn,n 0
PROOF . :

o By

Follows by Lemma 3.1 and the fact that a B-spline on the grid x is a non-negative

linear combination of B-splines on the refined grid t (see C. de Boor (1984), §2).
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